Title Earthquake prediction model based on danger theory in artificial immunity
Authors 梁意文
Issue Date 2020-07-01
Publisher Neural Network World
Citation Neural Network World,2020,(4):231-247
Abstract Earthquake prediction is an extraordinarily stochastic process. Determining the occurrence time, location of epicenter and magnitude of a coming earthquake in the following month is an extremely difficult task. Nowadays, some geophysical, statistical and machine learning methods are adopted to predict earthquakes, however, for the insufficient medium-large seismic data, their results are not satisfactory. Due to there is no obvious empirical relationship between seismicity features, magnitude and location of a coming earthquake in a particular time window, an earthquake prediction approach based on danger theory is proposed in this paper. It extracts eight indicators calculated from earthquake data for recent years in Sichuan and surroundings by Gutenberg-Richter(GR) inverse power-law, and predicts quakes with magnitude lager than 4.5 during the following month by numerical differential based Dendritic Cell Algorithm (ndDCA). We compare this approach with six state-of-art earthquake prediction algorithms. Overall our algorithm yields the encouraging results in all the qualified parameters assessed, and it provides technical support for the application of earthquake prediction.
Appears in Collections: 信科院办公室

Original Search


Files in This Work
There are no files associated with this item.

Google Scholar™






License: See PKU IR operational policies.