Title Carbon-Stabilized High-Capacity Ferroferric Oxide Nanorod Array for Flexible Solid-State Alkaline Battery-Supercapacitor Hybrid Device with High Environmental Suitability
Authors 黄新堂
Issue Date 2015
Publisher Advanced Functional Materials.
Keywords ALKALINE batteries
NANORODS
FERRIC oxide
IRON oxides
CARBON nanotubes
SUPERCAPACITORS
Citation Sep2015, Vol. 25 Issue 33, p5384-5394. 11p.
Abstract Iron oxides are promising to be utilized in rechargeable alkaline battery with high capacity upon complete redox reaction (Fe3+ Fe0). However, their practical application has been hampered by the poor structural stability during cycling, presenting a challenge that is particularly huge when binder-free electrode is employed. This paper proposes a 'carbon shell-protection' solution and reports on a ferroferric oxide-carbon (Fe3O4-C) binder-free nanorod array anode exhibiting much improved cyclic stability (from only hundreds of times to >5000 times), excellent rate performance, and a high capacity of ≈7776.36 C cm−3 (≈0.4278 C cm−2; 247.5 mAh g−1, 71.4% of the theoretical value) in alkaline electrolyte. Furthermore, by pairing with a capacitive carbon nanotubes (CNTs) film cathode, a unique flexible solid-state rechargeable alkaline battery-supercapacitor hybrid device (≈360 μm thickness) is assembled. It delivers high energy and power densities (1.56 mWh cm−3; 0.48 W cm−3/≈4.8 s charging), surpassing many recently reported flexible supercapacitors. The highest energy density value even approaches that of Li thin-film batteries and is about several times that of the commercial 5.5 V/100 mF supercapacitor. In particular, the hybrid device still maintains good electrochemical attributes in cases of substantially bending, high mechanical pressure, and elevated temperature (up to 80 °C), demonstrating high environmental suitability. [ABSTRACT FROM AUTHOR] Copyright of Advanced Functional Materials is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Appears in Collections: 基科部办公室

Original Search


Files in This Work
There are no files associated with this item.

Google Scholar™






License: See PKU IR operational policies.